

Technology

Two Heads Are Better Than One: **Improving Fake News Video Detection by Correlating with Neighbors** Peng Qi^{1,2}, Yuyang Zhao³, Yufeng Shen², Wei Ji³, Juan Cao^{1,2*} and Tat-Seng Chua³ ¹ Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences ² University of Chinese Academy of Sciences ³ National University of Singapore {qipeng,caojuan}@ict.ac.cn,yuyang.zhao@u.nus.edu, shenyufeng22@mails.ucas.ac.cn, {jiwei,dcscts}@nus.edu.sg

> ACL2023 code:https://github.com/ICTMCG/NEED

Reported by Xiaoke Li

Event: Man cries in pain as his clothing store is flooded.

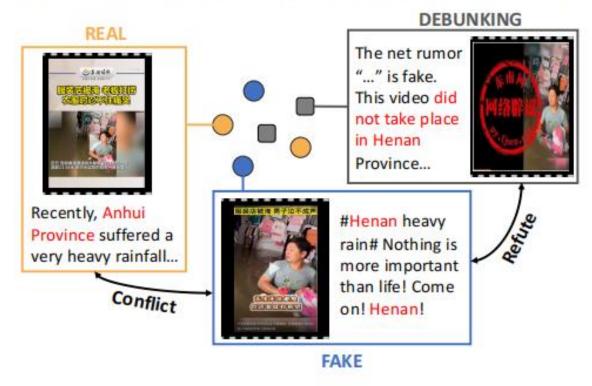
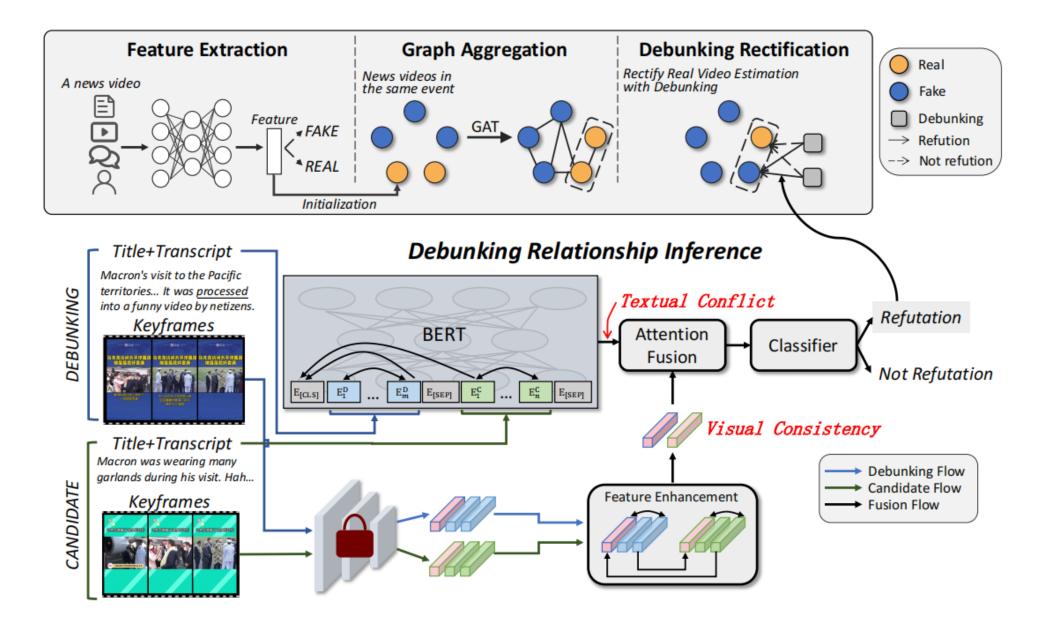
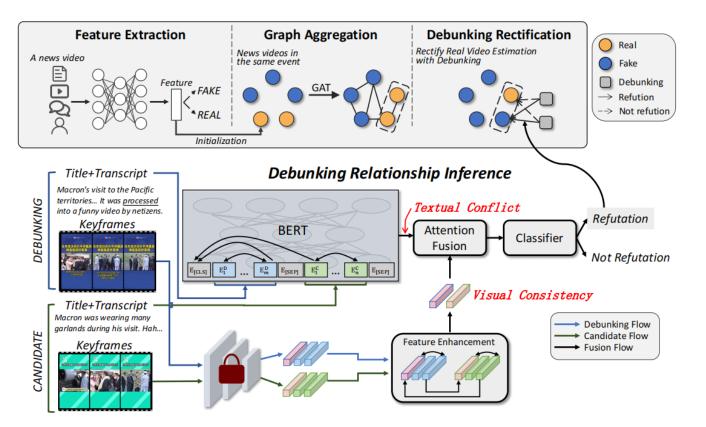



Figure 1: A set of videos belonging to the same event. Fake news videos contain conflicting information with the real ones, and the debunking videos can refute the mismatched information in the fake news videos.



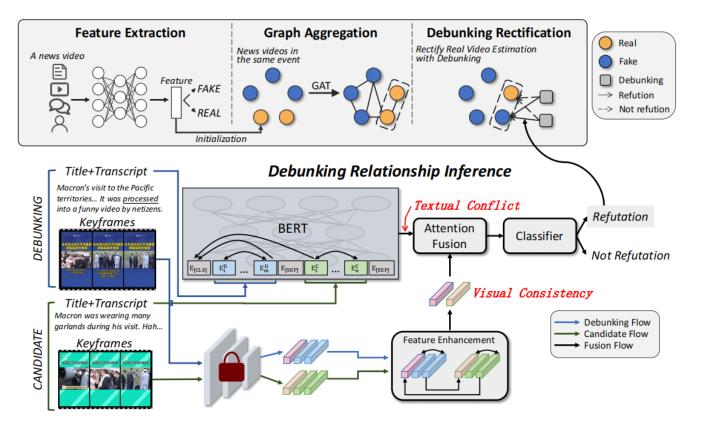
$$e_{ij} = \text{LeakyReLU}(\boldsymbol{a}^{\top}[\boldsymbol{W}\boldsymbol{v}_i, \boldsymbol{W}\boldsymbol{v}_j]),$$

$$\alpha_{ij} = \text{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})},$$

$$\hat{\boldsymbol{v}}_i = \sigma(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \boldsymbol{W} \boldsymbol{v}_j),$$

(1)
(2)

$$\mathcal{L} = -[(1-y)\log(1-p_{\rm GA}) + y\log p_{\rm GA}], \quad (3)$$


where p_{GA} is the predicted probability and $y \in \{0,1\}$ denotes the ground-truth label.

$$p^{i} = \max\{p^{i}_{\text{GA}}, p^{i}_{\text{DR}}\},\$$

$$p^{i}_{\text{DR}} = \max_{\eta^{j}_{\text{D}} \in I_{\text{D}}} \text{DRI}(\eta^{i}_{\text{C}}, \eta^{j}_{\text{D}}).$$
(4)

$$\boldsymbol{x}_{t} = \mathsf{BERT}([\mathsf{CLS}]S_{\mathrm{D}}[\mathsf{SEP}]S_{\mathrm{C}}[\mathsf{SEP}]).$$
 (5)

$$\hat{F}_{\rm D} = [f_{\rm D}^{\rm [CLS]}, f_{\rm D}^{1}, ..., f_{\rm D}^{l}] + f_{\rm tem},$$

$$\hat{F}_{\rm C} = [f_{\rm C}^{\rm [CLS]}, f_{\rm C}^{1}, ..., f_{\rm C}^{k}] + f_{\rm tem}.$$
 (6)

$$\boldsymbol{x}_{\mathrm{v}} = [\boldsymbol{f}_{\mathrm{D}}^{[\mathrm{CLS}]}, \boldsymbol{f}_{\mathrm{C}}^{[\mathrm{CLS}]}]. \tag{7}$$

Table 1: Statistics on the number of news videos in each event.

	#Fake	#Real	#Debunking	All
Avg.	3	3	3	8
Min.	0	0	0	1
Max.	24	21	20	25

Table 2: Performance (%) comparison of base models with and without NEED. The better result in each group using the same base model are in **boldface**, and the absolute gain is calculated. We report the mean and standard deviation of the five-fold cross-validation.

	Method	ethod Acc.		F 1		Prec.		Recall	
	BERT	$ 77.05_{\pm 3.24}$	_	$77.02_{\pm 3.27}$	_	$77.21_{\pm 3.12}$	_	$77.07_{\pm 3.20}$	_
single-modal	+ NEED	82.99 _{±3.86}	5.94↑	82.96±3.87	5.94↑	$83.19_{\pm 3.87}$	5.98 ↑	82.99 _{±3.88}	5.92↑
	Faster R-CNN +Att	$70.19_{\pm 2.70}$	_	$70.00_{\pm 2.68}$	_	$70.68_{\pm 2.89}$	_	$70.15_{\pm 2.69}$	-
m	+ NEED	$78.48_{\pm 3.30}$	8.29↑	$78.45_{\pm 3.28}$	8.45↑	$78.71_{\pm 3.45}$	8.03↑	$78.50_{\pm 3.28}$	8.35↑
gle-	VGGish	$66.91_{\pm 1.33}$	_	66.82 ± 1.30	_	$67.07_{\pm 1.41}$	_	$66.89_{\pm 1.32}$	_
ing	+ NEED	75.25 ±1.61	8.34↑	$75.12_{\pm 1.63}$	8.30↑	$75.73_{\pm 1.67}$	8.66↑	$75.22_{\pm 1.61}$	8.33↑
s	Wu et al. (2022)	$77.10_{\pm 2.04}$	_	$74.71_{\pm 2.13}$	_	$76.43_{\pm 2.16}$	_	$73.98_{\pm 2.05}$	_
	+ NEED	$82.96_{\pm 3.42}$	5.86↑	$82.93_{\pm 3.44}$	8.22↑	$\textbf{83.14}_{\pm 3.44}$	6.71↑	$82.95_{\pm 3.46}$	8.97 ↑
lal	FANVM	$ 76.00_{\pm 2.29}$	_	$75.98_{\pm 2.30}$	_	$76.07_{\pm 2.28}$	_	$76.01_{\pm 2.30}$	_
100	+ NEED	80.97 _{±4.05}	4.97 ↑	80.90±4.10	4.92↑	81.36 ± 3.96	5.29↑	80.96 ± 4.04	4.95↑
tin	SV-FEND	$79.95_{\pm 1.97}$		$79.89_{\pm 2.01}$		$80.23_{\pm 1.78}$		$79.94_{\pm 1.98}$	_ `
Multimodal	+ NEED	84.62±2.13	4.67↑	$\underline{\textbf{84.61}}_{\pm 2.12}$	4.72↑	$\underline{\textbf{84.81}}_{\pm 2.24}$	4.58↑	$\underline{\textbf{84.64}}_{\pm 2.14}$	4.70↑

ATA Advanced Technique of Artificial Intelligence

Table 3: Ablation studies on each component in NEED GA: graph aggregation, DR: debunking rectification The standard deviation values are ignored for simplicity.

Method	Acc.	F1	Prec.	Recall
SV-FEND	79.95	79.89	80.23	79.94
+ DR	80.94	80.90	81.15	80.93
+ GA	83.43	83.41	83.61	83.45
+ NEED $(DR\&GA)$	84.62	84.61	84.81	84.64
VGGish	66.91	66.82	67.07	66.89
+ DR	72.84	72.70	73.30	72.84
+ GA	74.83	74.64	75.54	74.80
+ NEED $(DR\&GA)$	75.25	75.12	75.73	75.22
DR	82.95	81.05	81.36	81.04

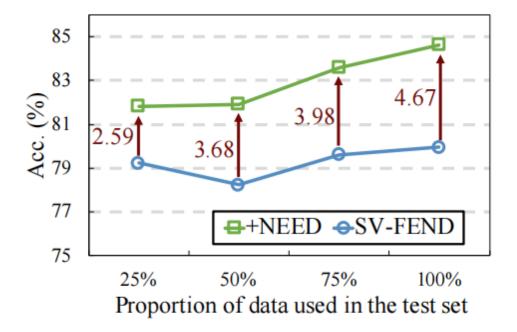


Figure 3: Performance of NEED in early detection.

Table 4: Peformance of NEED under the temporal split.

Method	Acc.	F1	Prec.	Recall
SV-FEND	82.20	81.47	82.89	80.99
+NEED	89.67	89.37	90.16	88.97

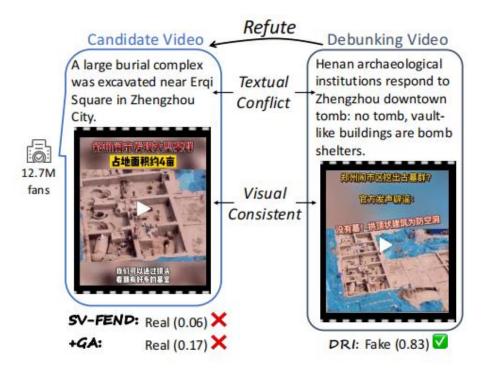


Figure 5: An example where the debunking video helps spot the "hard" fake news video missed by previous modules. The number denotes the predicted probability of labels being 0 (real) and 1 (fake), respectively.

Thanks